Strategies to Maximize Burst Lengths in Rhythmic Anti-Phase Activity of Networks with Reciprocal Inhibition

نویسندگان

  • Amitabha Bose
  • Jonathan E. Rubin
چکیده

We consider repetitive activity patterns in which a pair of oscillators take turns becoming active, motivated by anti-phase bursting activity in neuronal networks. In our framework, when one unit is active, it inhibits the other, as occurs with inhibitory synaptic coupling of neurons; when the inhibition is strong enough, the inhibited unit is prevented from activating. We assume that the coupling resources available to each oscillator are constrained and allow each unit to select the amount of input that it provides to the other each time that it activates. In this setting, we investigate the strategies that each oscillator should utilize in order to maximize the number of spikes it can fire (or equivalently the amount of time it is active), corresponding to a burst of spikes in a neuron, before the other unit takes over. We derive a one-dimensional map whose fixed points correspond to periodic anti-phase bursting solutions. We introduce a novel numerical method to obtain the graph of this map and we extend the analysis to select solutions that achieve consistency between coupling resource use and recovery. Our analysis shows that corresponding to each fixed point of the map, there is actually an infinite number of related strategies that yield the same number of spikes per burst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.

A fundamental question in vertebrate locomotion is whether distinct spinal networks exist that are capable of generating rhythmic output for each group of muscle synergists. In many vertebrates including the lamprey, it has been claimed that burst activity depends on reciprocal inhibition between antagonists. This question was addressed in the isolated lamprey spinal cord in which the left and ...

متن کامل

Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.

In this study, contributions of left-right reciprocal coupling mediated by commissural interneurons in spinal locomotor networks to rhythmogenesis were examined in larval lamprey that had longitudinal midline lesions in the rostral spinal cord [8 --> 30% body length (BL), relative distance from the head] or caudal spinal cord (30 --> 50% BL). Motor activity was initiated from brain locomotor co...

متن کامل

Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity

The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML) spinal lesions (~13%→35% body length, BL), before and after spinal transections (T) at 35% BL. Importantly, in the present study ac...

متن کامل

Segmental oscillators in axial motor circuits of the salamander : 1 distribution and bursting mechanisms . 2 3 4

34 The rhythmic and coordinated activation of axial muscles that underlie trunk 35 movements during locomotion are generated by specialized networks in the spinal cord. The 36 operation of these networks has been extensively investigated in limbless, swimming 37 vertebrates. But little is known about the architecture and functioning of the axial locomotor 38 networks in limbed vertebrates. We i...

متن کامل

Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.

The rhythmic and coordinated activation of axial muscles that underlie trunk movements during locomotion are generated by specialized networks in the spinal cord. The operation of these networks has been extensively investigated in limbless swimming vertebrates. But little is known about the architecture and functioning of the axial locomotor networks in limbed vertebrates. We investigated the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015